
Using Mac F2C With CodeWarrior C/C++

Before you can use the code produced by Mac F2C, you must set up and build all 
of the required support libraries.    There are also special rules that must be 
followed when using code produced by Mac F2C.    The process and rules are 
slightly different for each compiler.    The instructions in this chapter are for setting
up Mac F2C for use with Metrowerks CodeWarrior C/C++.    Refer to other 
chapters for instructions on how to set things up for use with Symantec C/C++ or 
THINK C/C++.

Users upgrading to version 1.3.2 from version 1.3.1 or 1.3 need only replace the 
Mac F2C application itself, the files F2Cmain.c and F2Cmain.cp located in the 
Mac F2C Support within CodeWarrior’s MacOS Support folder, and (for CW 1.7 
users) install the project stationary found in Mac F2C’s For '(Project Stationery)' 
folder.    Users upgrading from versions prior to v1.3 need to re-install all libraries, 
project files, stationary, and supporting files.    All files, including library source 
code, have been updated in version 1.3.       

Please note that the source code and libraries provided are set up for use 
with CodeWarrior IDE v1.7.    

If you have a newer version of CW, first check if there is a more recent version of Mac F2C.    If not,    convert all the
CW project files contained in the Mac F2C package by simply opening and closing themwith the new version of 
CW (answer “OK” when asked if you want to update the project file).    The CW project files you must convert are 
located in the Test Project ƒ and Mac F2C Libraries folders.    Then run the installer.    If this does not work (I 
obviously can’t guarantee it will), let me know.

Setting Up Mac F2C Using the Installer

The easiest way to set up Mac F2C is to use the installer included with Mac F2C.    
This installer will only work correctly if you have System 7.5 (or higher) and have 
CodeWarrior IDE v1.7.    If you do not meet both of these requirements, please 
follow the instructions for manual installation found in the following section.

The installer is stand-alone AppleScript application called Mac F2C Installer.    To 
run the installer, simply double click on it, and answer the dialogs it presents.    The
installer will do the following:

• Create a folder called Mac F2C Support within CodeWarrior’s MacOS Support 
folder.



• Build the appropriate Mac F2C libraries.
• Move the built libraries to the Mac F2C Support folder.
• Copy the other support files (found in the For 'Mac F2C Support' folder: 
F2Cmain.c, F2Cmain.cp, f2c.h, and F2C Cursors.rsrc) to the Mac F2C Support 
folder.
• Copy the Mac F2C project stationary files to CodeWarrior’s (Project Stationery) 
folder, creating a Mac F2C folder there too.
• Translate and build the appropriate versions of the test application.

When the installer is finished, you will find completed test applications in the Test 
Project ƒ folder.    You should run these to verify correct operation of Mac F2C and 
its libraries.    After that, you are ready to go.    To compile translated FORTRAN 
code, simply open a new project in CodeWarrior, select the appropriate version of 
Mac F2C stationary, and add the translated files.

The remaining sections provide step-by-step instructions for installing Mac F2C 
manually (including how to install for earlier CodeWarrior versions), a more 
detailed description of how to test your Mac F2C installation, and additional 
information on using code generated by Mac F2C with CodeWarrior.

Setting Up Mac F2C Manually

Set up is a two step process.    First you must build the libraries, and then you must 
move several files to their proper locations.

Step 1: Build all the libraries

The libraries of the Mac F2C distribution come without binaries, so you have to 
build them according to the following algorithm. There are two versions of each 
library project, one for the 68K compiler and one for the PowerPC compiler. They 
are named with the usual extensions, 68K.µ and PPC.µ. You can use both versions 
or just one if you like (in that case, skip the instructions for which ever version you
don’t want).

FOR the project files in the Mac F2C Libraries folder:
        (1) libI77.68K.µ
        (2) libF77.68K.µ
        (3) libI77.PPC.µ
        (4) libF77.PPC.µ
REPEAT the following steps:



        (a) Double-click on the project file.    
        (b) In the CW Environment’s Project menu, 
                  select the Make command.    
END REPEAT

Step 2:    Move things to the recommended locations

For easiest and smoothest operation, the support libraries and other support files 
should be installed where the CodeWarrior C compiler can find them easily.    I 
recommend you install Mac F2C libraries and support files as follows:

• Create a folder called Mac F2C Support inside the MacOS Support folder within 
the    folder that contains the CodeWarrior application.    All of the libraries and 
files required to support Mac F2C code will be placed in this folder. 

• Drag the libraries libI77.68K, libF77.68K, libI77.PPC, and libF77.PPC you 
obtained by following the instructions of Step 1 from the folder Mac F2C Libraries
to the Mac F2C Support folder that you just created. 

WARNING:    Do not place the source code    for these libraries (found in the 
folders libF77 Sources and libI77 Sources) in the folder containing the 
CodeWarrior application or in any of its sub-folders).    The source code for these 
libraries has name conflicts with Apple’s Universal Headers (e.g., a file called fp.h 
appears in both, but the two are not equivalent files).    Otherwise any of your code 
that #includes any of the conflicted files may inadvertently access the wrong file.
        
• The For 'Mac F2C Support' folder located in the CodeWarrior Support folder 
contains files (f2c.h, F2Cmain.c,    F2Cmain.cp, and F2Ccursors.rsrc) that are 
needed to compile C programs produced by Mac F2C.    Drag these files to to the 
Mac F2C Support folder you created earlier inside the MacOS Support folder.

• The For '(Project Stationary)' located in the CodeWarrior Support folder 
contains project stationary files that are used for compiling C and C++ code 
produced by Mac F2C.    Open the For 'MacOS' folder located inside the For 
'(Project Stationary)' folder and find a folder called Mac F2C.    Drag the Mac F2C
folder    into the MacOS folder located inside CodeWarrior’s (Project Stationary) 
folder.    

Verifying Correct Operation of Mac F2C



The folder Test Project ƒ contains the following files relevant to CodeWarrior:

test.f -- a sample FORTRAN program.

F2Cmain.c -- the main program required to run programs produced by    Mac F2C.

F2Cmain.cp -- the main program required to run programs produced by    Mac 
F2C.

f2c.h -- an include file required to compile programs produced by Mac F2C.

test.c (C Output) -- what you should get when you translate the sample 
FORTRAN code files.

Test.68K.µ and Test.PPC.µ -- CodeWarrior projects to run the sample program. 
These serve as models for how to compile, link, and run C code produced by Mac 
F2C. 

test.cp (C++ Output) -- what you should get when you translate 
the sample FORTRAN code files and select the C++ output option.

Test++.68K.µ and Test++.PPC.µ -- CodeWarrior projects to run the sample 
program when Mac F2C is used to produce C++ output. These serve as models for 
how to compile, link, and run C++ code produced by Mac F2C. 
        
Translate the sample FORTRAN program Test.f simply by dragging it onto Mac 
F2C.    Do not change any of the options (use Factory Defaults).    Once you have 
done this you can compare it with Test.c (C Output) file to verify that you got the 
same thing.    If so, double click on the CodeWarrior project Test.68K.µ or 
Test.PPC.µ and run it to verify correct operation.

If you also plan to use Mac F2C C++ output with the Codewarrior, you can run a 
second test to verify correct operation with the C++ compiler.    Start Mac F2C and 
in the C Options dialog, select C++ code.    Do not change any of the other 
options.    Translate Test.f.    Compare it with Test.cp (C++ Output) to verify that 
you got the same thing.    If so, double click on the CodeWarrior project Test+
+.68K.µ or Test++.PPC.µ and run it to verify correct operation.

Using C Code Generated by Mac F2C



The C code produced by Mac F2C has the following compile and link 
requirements:

68K version:
        • the header file:
                  f2c.h
        • the F2C libraries: 

libI77.68K 

libF77.68K
        • the resource file:
              F2C Cursors.rsrc
        • the CodeWarrior libraries: 
              ANSIFa(4i/8d)C.68K.Lib
              MathLib68K (4i/8d).Lib
              SIOUX.68K.Lib
              MacOS.lib        
        • for C++ code only, the CodeWarrior libraries:
              ANSIFa(4i/8d)C++.68K.Lib
              CPlusPlus.Lib
        • 4-byte integers
        • 8-byte doubles
        • Far Data
        • Smart code model

PPC version:
        • the header file:



              f2c.h
        • the F2C libraries: 
              libI77.PPC 
              libF77.PPC
        • the resource file:
              F2C Cursors.rsrc
        • the CodeWarrior libraries:    
              ANSI C.PPC.Lib
              MWCRuntime.Lib 
              Interface.Lib
              SIOUX.PPC.Lib
              MathLib 
        • for C++ code only, the CodeWarrior library:
              ANSI C++.PPC.Lib
        
In addition, if you compile a stand-alone FORTRAN program (instead of only 
some FORTRAN subroutines) you must include F2Cmain.c in your project (or 
F2Cmain.cp if you use C++; the two files are identical).    This is because the 
original main routine in the FORTRAN program becomes a function that is called 
by F2Cmain.c.    In addition, F2Cmain.c performs a series of initializations 
(primarily related to error catching) prior to executing the main FORTRAN 
program.

The For '(Project Stationary)' and For 'Mac F2C Support' folders provided in the 
CodeWarrior Support folder contain everything you need to compile and run code 
produced by Mac F2C.    You can install them following the instructions above.

To start a new project using Mac F2C code, launch the CodeWarrior application, 
select New Project…, and then choose the appropriate Mac F2C project stationary 
in the resulting Standard File dialog.    Then add your code files to the project and 
bring everything up-to-date.    Use the “C” versions of project stationary to work 
with C code generated by Mac F2C and the “C++” versions of project stationary to
work with C++ code generated by Mac F2C.

If you compile a FORTRAN subroutine or function that you want to call from a C 
program, look at the output C code to see the appropriate calling protocol.    You 
may or may not need to include the F2C support libraries (libF77 and libI77).    In 
rare cases, you may also need to copy some of the initialization code from 
F2Cmain.c to your calling program.

Special 68K Considerations



Please read the following section carefully if you intend to use Mac F2C with the 
CodeWarrior 68K compiler (the PPC compiler doesn’t give you any of the options 
mentioned, so there is nothing to consider):

As noted above, code produced by Mac F2C MUST be compiled with 4-byte 
integers.    This requirement cannot be relaxed.    The other requirements (8-byte 
doubles, far data) can sometimes be relaxed.

IF you do not use doubles in any situation where their size relative to reals or 
integers matters (e.g., if you do not use doubles in equivalence and common 
statements), then your code probably does not require 8-byte doubles.    You need 
to verify this on a case-by-case basis.

This requirement exists because Mac F2C follows FORTRAN sizing rules when 
compiling FORTRAN code:    sizeof(real) == sizeof(integer) and sizeof(double) ==
2*sizeof(real).    FORTRAN real is translated as    C float and FORTRAN double as
C double, so doubles have to be 8-bytes long for equivalence and common 
statements to be properly aligned.    There are a few other cases where the size of 
double variables matters; see AT&T Computing Science Technical Report    No. 
149 (included with Mac F2C) for a detailed discussion.
                
IF you compile your program with the option Local variables are automatic and 
you do not have large static data structures, you might not need Far Data.    You 
need to verify this on a case-by-case basis.
                
Mac F2C creates large static data structures for I/O.    If you create local variables 
in the global area (static instead of automatic) or    if you have other static data, you
will almost certainly require Far Data.    The I/O data structures can be large 
enough that you may    require Far Data for that reason alone.    

The 68K project files are all set to use the Smart code model. That means, the 
compiler generates a combination of the far and near (32 bit and 16 bit) addressing 
types, using near when possible. Segments are not limited to 32K of object code.
                
I suggest to stick with this option, since the Large code model doesn’t usually give 
you advantages over Smart, and Small requires a jump table for inter-segment 
jumps which has a negative effect on code size and speed. But you can try and put 
all files into one segment if your program is small enough and doesn’t use much of 
the library code.    You need to verify this on a case-by-case basis.    If you are 



working with very large FORTRAN programs, you may get a link error from 
Codewarrior saying something to the effect that 16-bit offsets aren’t enough to 
reach some function or other.    In this case you can simply select the Large code 
model to solve the problem.      
                
If you change the 8-byte doubles, Smart, Far Data, or 68881 options, remember 
to also change them in all the Mac F2C libraries, specifically libI77.68K and 
libF77.68K, and include the appropriate ANSI library.    The standard ANSI library 
used in the F2C project files is ANSIFa(4i/8d)C.68K.Lib.    The ‘Fa’ stands for “Far 
Model” and the arguments inside the parentheses show the compiler options (4-
byte integers/8-byte doubles).    For example, if you don’t need 8-byte doubles, use 
ANSIFa(4i)C.68K.Lib, if you want direct 68881 support, use 
ANSIFa(4i/F/8d)C.68K.Lib.

I urge all users to read the enclosed AT&T Computing Science Technical Report 
No. 149.    Consider it your compiler and language reference manual.    You can 
print the report by downloading it to any PostScript printer.    You can use Apple’s 
LaserWriter Utility application to do this or you can use any of the many 
equivalent utilities.    


